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Introduction

The zeta distribution, sometimes also called the Zipf distribution, is the discrete
analogue of the so-called Pareto distribution, and has been used to model a
variety of interesting phenomena with fat-tailed power-law behaviour.

Examples include word frequency, corporate income, citations of scientific
papers, web hits, copies of books sold, frequency of telephone calls, magnitudes
of earthquakes, diameters of moon craters, intensities of solar flares, intensities
of wars, personal wealth, frequencies of family names, frequencies of given
names, populations of cities.

It makes sense therefore to consider financial contracts for which the payoff is
represented by a random variable of this type.

This talk will present an overview of some of the properties of the zeta
distribution and the associated multipicative Lévy process, which we shall call
the zeta process, with a view to financial applications.

The material under consideration can be regarded more generally as part of an
ongoing program, being pursued by a number of authors, devoted to various
aspects of the relationship between probability and number theory.
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Definitions

We fix a probability space (Ω,F ,P) and let Z be a random variable taking
values in the positive integers, with

P(Z = n) =
n−s

ζ(s)
. (1)

Here ζ(s) =
∑∞

n=1 n
−s, for some fixed s > 1.

We say that Z is zeta-distributed with parameter s, or simply that Z has a
Zeta(s) distribution. Sometimes we write Ps instead of P to emphasize the
choice of parameters.

What is so special about the zeta distribution?

One way to motivate the introduction of the zeta distribution is through a
maximum entropy argument.

For this purpose it will be useful to consider first the geometric distribution.
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Let us write {qn}n∈N0 for a probability distribution on N0, and

S = −
∞∑
n=0

qn ln qn (2)

for the associated Shannon entropy.

Let the random variable A have the distribution {qn}, and choose {qn} so that
the entropy S is maximal under the constraint that E[A] has a specified value.

Then one can show that A has a geometric distribution

P(A = n) = qn(1− q), (3)

where the parameter q > 0 is determined by the mean E[A] = q/(1− q).

Now, let Z take values in N, with the distribution {qn}n∈N, and choose {qn}n∈N
such that S is maximized for some fixed value of E[lnZ].

Then Z has a zeta distribution with parameter s, where s is determined for a
given value of the mean of the logarithm of Z by the relation

E[lnZ] = −ζ
′(s)

ζ(s)
. (4)
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Interpretation

Let {Zi}i=1...k represent a collection of independent outcomes of a sample from
the zeta distribution. Then by the strong law of large numbers, for large k we
have

E[lnZ] ≈ ln
( k∏
i=1

Zi
)1/k

. (5)

Thus, intuitively, fixing E[lnZ] means fixing the geometric mean of Z.

It follows that the zeta distribution is the maximum entropy distribution for a
given value of the geometric mean.

The fact that it is the geometric mean that arises in the present context reminds
us that the zeta function is associated with multiplicative properties of the
natural numbers.

Divisibility property

Let us write m|Z for the event { m divides Z }.
Then one can show that Z has the following so-called “factorization” property:
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Proposition 1. Let Z have a zeta distribution. Then for m and n relatively
prime we have

P[m|Z & n|Z] = P[m|Z] P[n|Z]. (6)

Proof. First, we note that

P[m|Z] =

∞∑
k=1

P[Z = km] (7)

=

∞∑
k=1

(km)−s

ζ(s)
(8)

= m−s. (9)

Likewise, we have
P[mn|Z] = (mn)−s. (10)

But, if (m,n) = 1, then {mn|Z} = {m|Z & n|Z}, and the result follows.

Remark 1. We observe that P{m does not divide Z} is given for any m by

P(m - Z) = 1−m−s. (11)

L.P. Hughston Imperial College



Financial Applications of the Zeta Process - 7 - 14 December 2010

Thus the relation
P(Z = 1) =

∏
p∈P

P(p - Z) (12)

gives us a probabilistic interpretation of the Euler formula,

1

ζ(s)
=
∏
p∈P

(1− p−s). (13)

Change of measure

It will be useful in what follows to have at our disposal expressions for the
moment generating function and the characteristic function of lnZ.

In particular, we have:

E[e−iλ lnZ] = E[Z−iλ] (14)

=

∞∑
n=1

n−s−iλ

ζ(s)
(15)

=
ζ(s + iλ)

ζ(s)
. (16)
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Similarly for λ > 1− s we have:

E[Z−λ] =
ζ(s + λ)

ζ(s)
. (17)

We already know that the mean of lnZ is given by −ζ ′(s)/ζ(s), and from the
above one can deduce that

Var(lnZ) =
ζ ′′(s)

ζ(s)
− (ζ ′(s))2

(ζ(s))2
(18)

It follows that
(ln ζ(s))′′ > 0. (19)

In other words, ζ(s) is log-convex.

What is “log-convexity”?

This is the multiplicative analogue of ordinary convexity.

For example, if a, b, c and d denote four sequential real numbers each greater
than one, then we have

ζ(a)ζ(d)

ζ(b)ζ(c)
> 1. (20)
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Suppose now that s > 1 and that Z has a zeta distribution (with parameter s)
under Ps. Let λ > 1− s.

Then of course Ps[ω ∈ C] = Es[1C] for any C ∈ F . We define a new measure
Ps+λ on (Ω,F ) by setting

Ps+λ[ω ∈ C] = Es

[
1C

Z−λ

Es[Z−λ]

]
. (21)

Then under Ps+λ we have

Ps+λ[Z = n] = Es

[
1{Z=n}

Z−λ

Es[Z−λ]

]
(22)

=
n−λPs[Z = n]

Es[Z−λ]
(23)

= n−λ
n−s

ζ(s)

1

Es[Z−λ]
. (24)

But Es[Z−λ] = ζ(s + λ)/ζ(s), and it follows that

Ps+λ[Z = n] =
n−(s+λ)

ζ(s + λ)
. (25)
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Prime-factor representation

To proceed further it will be useful to decompose Z into prime factors. For each
ω ∈ Ω we have an expression of the form

Z = pA1
1 p

A2
2 p

A3
3 · · · . (26)

In this way we define the random variables Ak(ω) for k = 1, 2, 3, . . . , taking
values in N0.

Proposition 2. Z has a zeta distribution with parameter s if and only if the
Ak’s are independent geometric random variables with

P[Ak = αk] = q
αk
k (1− qk), (27)

where qk = p−sk .

Proof. On the one hand, if the Ak’s are as given we have

P[Z = n] =
∏
k

P[Ak = αk], (28)

where n =
∏

k p
αk
k .
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It follows that

P[Z = n] =
∏
k

q
αk
k (1− qk) (29)

=
∏
k

p
−sαk
k (1− p−sk ) (30)

= (
∏
k

p
αk
k )−s

∏
k

(1− p−sk ) (31)

=
n−s

ζ(s)
, (32)

as required. On the other hand, suppose Z has a zeta distribution with
parameter s. Then for each k we have

P[Ak = αk] = P[p
αk
k |Z & p

αk+1
k - Z] (33)

= P[p
αk
k |Z]− P[p

αk+1
k |Z] (34)

= p
−sαk
k − p−s(αk+1)

k (35)

= (p−sk )αk(1− p−sk ), (36)

as required. The independence of the events {pαkk |Z} for different values of k
then implies that the Ak’s are independent.
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The prime-factor representation for Z allows us to see various properties of Z
rather directly.

For example, the independence of the events {m|X} and {n|X} if (m,n) = 1
follows immediately from the independence of the Ak.

Poisson representation

The decomposition of Z into random prime factors can be pursued further to
give other useful representations of the zeta distribution.

To this end we examine the characteristic function of lnZ.

Note that lnZ =
∑

kAk ln pk. We thus have:

E[e−iλ lnZ] = E[e−iλ
∑
k Ak ln pk] (37)

=
∏
k

E[e−iλAk ln pk]. (38)

Now, for each k we can work out the corresponding term in the product above.

For a typical term we have (suppressing k):
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E[e−iλA ln p] =

∞∑
n=0

e−iλn ln pp−sn(1− p−s) (39)

=

∞∑
n=0

(p−(s+iλ))n(1− p−s) (40)

=
1− p−s

1− p−(s+iλ)
. (41)

For each p we have:

ln
1− p−s

1− p−(s+iλ)
= ln(1− p−s)− ln(1− p−(s+iλ)) (42)

= −
∞∑
n=1

1

n
p−sn +

∞∑
n=1

1

n
p−(s+iλ)n (43)

=

∞∑
n=1

1

n
p−sn[p−iλn − 1] (44)

=

∞∑
n=1

1

n
p−sn

[
e−iλn ln p − 1

]
. (45)
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Therefore, by exponentiation we have:

E[e−iλA ln p] =
1− p−s

1− p−(s+iλ)
=

∞∏
n=1

exp

[
1

n
p−sn

(
e−iλn ln p − 1

)]
. (46)

If N is a Poisson random variable taking values in the lattice {m∆}, m ∈ N0,
∆ ∈ R+, with intensity Λ, we have

P(N = m∆) =
Λm

m!
e−Λ, (47)

for m = 0, 1, 2, . . . . Its characteristic function is

E[e−iλN ] = exp[Λ(e−iλ∆ − 1)]. (48)

Therefore the Ak’s can be represented (in law) in the form

Ak =

∞∑
n=1

nπkn. (49)

Here the πkn’s are independent Poisson random variables, with intensity

E[πkn] =
1

n
p−snk . (50)
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Thus a zeta-distributed random variable has a multiplicative Poisson
representation, given by:

Z =
∏
k,n

p
nπnk
k . (51)

Lévy processes

The fact that the random variable lnZ has an infinitely divisible distribution
means that there is a natural Lévy process {Xt}t≥0 associated with it.

In particular we have

E[e−λXt] = etψ(λ), (52)

where

ψ(λ) = ln[e−λX1] (53)

= ln
ζ(s + λ)

ζ(s)
. (54)

L.P. Hughston Imperial College



Financial Applications of the Zeta Process - 16 - 14 December 2010

It follows that

E[e−λXt] = E[Z−λt ] =

(
ζ(s + λ)

ζ(s)

)t
. (55)

Here we write
Zt = exp(Xt) (56)

for the exponential process associated with {Xt}t≥0.

By use of the prime decomposition of {Zt} we infer the existence of a set of
independent Lévy processes {Akt}t≥0 such that

Zt =
∏
k

p
Akt
k . (57)

It follows then that

E[e−λAkt ln pk] =

(
1− p−sk

1− p−(s+λ)
k

)t

. (58)

This shows that for each t the random variable Akt has a negative-binomial
distribution.
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Alternatively, we can write

Zt =
∏
k,n

p
nπk,n(t)

k . (59)

Here {πk,n(t)}t≥0 is a collection of independent Poisson processes, with

E[πk,n(t)] = tn−1p−snk . (60)

Distribution of zeta process

We observe that 0 < x < 1 and real t > 0 we have

1

(1− x)t
=

∞∑
m=0

ωm(t)xm (61)

where

ωm(t) =
Γ(m + t)

Γ(t)Γ(m + 1)
. (62)

Thus if we write
qm = ωm(t)xm(1− x)t, (63)

we see that {qm} is a probability distribution.
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Then if we set x = p−sk we obtain

P(Akt = αk) = ωαk(t) p
−sαk
k (1− p−sk )t. (64)

Here

ωαk(t) =
Γ(αk + t)

Γ(t)Γ(αk + 1)
. (65)

Thus the distribution of Zt is given by

P[Zt = n] =
∏
k

P[Akt = αk] (66)

=
∏

k: p
αk
k ||n

ωαk(t) p
−sαk
k

∏
k

(1− p−sk )t. (67)

Thus

P[Zt = n] =
cn(t)n−s

(ζ(s))t
, (68)

where

cn(t) =
∏

k: p
αk
k ||n

Γ(αk + t)

Γ(t)Γ(αk + 1)
. (69)
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It is interesting to observe that this gives us the following Dirichlet expansion:

(ζ(s))t =

∞∑
n=0

cn(t)n−s. (70)

Martingales

A variety of martingales are associated with the zeta function.

In the case of Xt = lnZt we find that{
Xt + t

ζ ′(s)

ζ(s)

}
t≥0

(71)

is a Ps-martingale.

Likewise for each λ > 1− s the process {ρt}t≥0 defined by

ρt =

(
ζ(s)

ζ(s + λ)

)t
Z−λt (72)

is a Ps-martingale that can be used as the basis for a measure change.

L.P. Hughston Imperial College



Financial Applications of the Zeta Process - 20 - 14 December 2010

Asset pricing

We proceed therefore as follows, taking a pricing kernel approach.

Let us fix Ps as the “real-world” measure, and let {Zt} be the associated zeta
process.

Then assuming a constant interest rate r, and requiring that λ > 0, we can use
the martingale {ρt} to construct a pricing kernel {πt} by setting

πt = e−rtρt. (73)

The corresponding model for an asset process is given by

St = S0e
rt

(
ζ(s + λ)

ζ(s + λ− ν)

)t
Z ν
t , (74)

where the “volatility” ν is a parameter satisfying 0 < ν < s− 1.

Then on the one hand we have

πtSt = S0

(
ζ(s)

ζ(s + λ− ν)

)t
Z ν−λ
t , (75)

from which it follows that {πtSt} is a Ps-martingale, as required.
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On the other hand, we also have

E[St] = S0e
rt

(
ζ(s− ν)ζ(s + λ)

ζ(s)ζ(s + λ− ν)

)t
. (76)

We therefore able to deduce that E[St] > S0e
rt for t > 0.

The fact that model has positive excess returns (above the interest rate) follows
from the log-convexity of the Riemann zeta function. Specifically, we observe
that s− ν < s and s− ν < s + λ− ν and s < s + λ and s + λ− ν < s + λ.

One thus sees that it is possible to construct a consistent arbitrage-free theory
of financial claims with Zipfian payoffs and zeta-like dynamics, enjoying some of
the same mathematical tractability as the geometric Brownian motion model. In
particular, option prices can be computed.

Despite the various artificialities involved, and the somewhat stylized nature of
the distributions, this is encouraging, since it points towards the possibility of a
general theory of asset pricing incorporating such phenomena.
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